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Figure 1: Based on the pre-trained text-to-image diffusion model, FBSDiff enables efficient text-driven image-to-image trans-
lation by proposing a plug-and-play reference image guidance mechanism. It allows flexible control over different guiding
factors (e.g., image appearance, image layout, image contours) of the reference image to the T2I generated image, simply by
dynamically substituting different types of DCT frequency bands during the reverse sampling process of the diffusion model.

Abstract
Large-scale text-to-image diffusion models have been a revolution-
ary milestone in the evolution of generative AI, allowing wonderful
image generation with natural-language text prompt. However,
the issue of lacking controllability of such models restricts their
practical applicability for real-life content creation. Thus, attention
has been focused on leveraging a reference image to control text-to-
image synthesis, which is also regarded as manipulating (or editing)
a reference image as per a text prompt, namely, text-driven image-
to-image translation. This paper contributes a novel, concise, and
efficient approach that adapts pre-trained large-scale text-to-image
(T2I) diffusion model to the image-to-image (I2I) paradigm in a plug-
and-play manner, realizing high-quality and versatile text-driven
I2I translation without model training, fine-tuning, or online opti-
mization process. To guide T2I generation with a reference image,
we propose to decompose diverse guiding factors with different
frequency bands of diffusion features in the DCT spectral space,
and accordingly devise a novel frequency band substitution layer
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which realizes dynamic control of the reference image to the T2I
generation result in a plug-and-play manner. We demonstrate that
our method allows flexible control over both guiding factor and
guiding intensity of the reference image simply by tuning the type
and bandwidth of the substituted frequency band, respectively. Ex-
tensive qualitative and quantitative experiments verify superiority
of our approach over related methods in I2I translation visual qual-
ity, versatility, and controllability. Our project is publicly available
at: https://xianggao1102.github.io/FBSDiff_webpage/.
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1 Introduction
Text-driven I2I translation is an appealing computer vision problem
that aims to translate a reference image as per a text prompt. It
extends text-to-image (T2I) synthesis to more controllability by
controlling T2I generation result with a reference image. Since the
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advent of CLIP [28] bridging vision and language through large-
scale contrastive pre-training, attempts have been made to instruct
image manipulation with text by combining CLIP with generative
models. VQGAN-CLIP [6] pioneers text-driven image translation
by optimizing VQGAN [9] latent image embedding with CLIP text-
image similarity loss. DiffusionCLIP [16] fine-tunes diffusion model
[12] under the same CLIP loss to manipulate an image with a text.
DiffuseIT [17] combines VIT-based structure loss [38] and CLIP-
based semantic loss to guide diffusion model’s reverse sampling
process via manifold constrained gradient [5], synthesizing trans-
lated image that complies with the target text while maintaining the
structure of the reference image. However, these methods are not
competitive in generation visual quality due to the limited model
capacity of backbone generative model as well as the unstability
caused by online fine-tuning or optimization process.

To promote image translation visual quality, efforts have been
made to train large models on massive data. InstructPix2Pix [2]
employs GPT-3 [3] and Stable Diffusion [30] to synthesize huge
amounts of paired training data, based on which trains a supervised
text-driven I2I mapping for general image manipulation task. De-
sign Booster [36] trains a latent diffusion model [30] conditioned
on both text embedding and image embedding, realizing layout-
preserved text-driven I2I translation. Nevertheless, these methods
are computationally intensive in training large models from scratch
and less efficient in collecting immense training data.

To circumvent formidable training costs, research has been fo-
cused on leveraging off-the-shelf large-scale T2I diffusion models
for text-driven I2I translation. This type of methods further divide
into fine-tuning-based methods and inversion-based methods.

The former type of fine-tuning-based methods represented by
SINE [43] and Imagic [15] fine-tune the pre-trained T2I diffusion
model to reconstruct an input reference image before manipulating
it with a target text. These methods require separate fine-tuning of
the entire model for each text prompt, which is less efficient and
prone to underfitting or overfitting to the reference image.

The latter type of inversion-based methods invert reference im-
age into diffusion model’s Gaussian noise space and then generate
the translated image via the reverse sampling process guided by the
target text. A pivotal challenge of this pipeline is that the sampling
trajectory may severely deviate from the inversion trajectory due
to the error accumulation caused by the classifier-free guidance
technique [13], which severely impairs the correlation between the
reference image and the translated image. To remedy this issue,
Null-text Inversion [22] optimizes the unconditional null-text em-
bedding to calibrate the sampling trajectory step by step. Prompt
Tuning Inversion [8] proposes to minimize trajectory divergence
with an optimization to encode the reference image into a learnable
prompt embedding. Similarly, StyleDiffusion [18] opts to optimize
the “value" embedding of the cross-attention layer as the visual
encoding of the reference image. Pix2Pix-zero [25] penalizes trajec-
tory deviation by matching cross-attention maps between the two
trajectories with least-square loss. These methods apply per-step
online optimization to calibrate thewhole sampling trajectory, intro-
ducing additional computational cost and time overhead. Moreover,
most of these methods adopt the cross-attention control technique
introduced in Prompt-to-Prompt [11] for image structure preserva-
tion. This makes them rely on a paired source text of the reference

image, which is not flexible or even available in most cases. Plug-
and-Play (PAP) [39] leverages feature maps and self-attention maps
extracted from internal layers of the denoising U-Net to maintain
image structure, realizing optimization-free text-driven I2I transla-
tion. However, the algorithm is sensitive to specific layer selection,
the feature extraction process is also time-consuming.

In this paper, we propose a concise and efficient approach termed
FBSDiff, realizing plug-and-play and highly controllable text-driven
I2I translation from a frequency-domain perspective. To guide T2I
generation with a reference image, a key missing ingredient of ex-
isting methods is the mechanism to control the guiding factor (e.g.,
image appearance, layout, contours) and guiding intensity of the
reference image. Since different image guiding factors are difficult
to isolate in the spatial domain, we consider decomposing them in
the frequency domain by modeling them with different frequency
bands of diffusion features in the Discrete Cosine Transform (DCT)
spectral space. Based on this motivation, we propose an inversion-
based text-driven I2I translation framework featured with a novel
frequency band substitution mechanism, which efficiently enables
reference image guidance of the T2I generation by dynamically
substituting a certain DCT frequency band of diffusion features
with the corresponding counterpart of the reference image along
the reverse sampling process. As displayed in Fig. 1, T2I genera-
tion with appearance and layout control, pure layout control, and
contour control of the reference image can be respectively realized
by transplanting low-frequency band, mid-frequency band, and
high-frequency band between diffusion features, allowing versatile
and highly controllable text-driven I2I translation.

The strengths of our method are fourfold: (I) plug-and-play effi-
ciency: it extends pre-trained T2I diffusion model to the realm of
I2I in a plug-and-play manner; (II) conciseness: it dispenses with
the need for the paired source text of the reference image as well as
cumbersome attention modulation process as compared with exist-
ing advanced methods, all while achieving leading I2I translation
performance; (III) model generalizability: it transplants frequency
band of diffusion features along the reverse sampling trajectory, re-
quiring no access to any internal features of the denoising network,
and thus decouples with the specific diffusion model backbone
architecture as compared with existing methods; (IV) controllabil-
ity: it allows flexible control over the guiding factor and guiding
intensity of the reference image simply by tuning the type and
bandwidth of the substituted frequency band. To summarize, we
make the following key contributions:

• We provide new insights about controllable diffusion sam-
pling process from a novel frequency-domain perspective.

• We propose a novel frequency band substitution technique,
realizing plug-and-play text-driven I2I translation without
any model training, model fine-tuning, and online optimiza-
tion process.

• We contribute a concise and efficient text-driven I2I frame-
work that is free from source text and cumbersome attention
modulation operations, highly controllable in both guiding
factor and guiding intensity of the reference image, and
invariant to the architecture of the used diffusion model
backbone, all while achieving superior I2I translation perfor-
mance compared with existing advanced methods.
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Figure 2: Overview of FBSDiff. Based on the pre-trained latent diffusionmodel (LDM), FBSDiff starts with an inversion trajectory
that inverts reference image into the LDM Gaussian noise space, then a reconstruction trajectory is applied to reconstruct the
reference image from the inverted Gaussian noise, providing intermediate denoising results as pivotal guidance features. The
guidance features are leveraged to guide the text-driven sampling trajectory of the LDM to exert reference image control, which
is realized by inserting our proposed frequency band substitution layer in between the reconstruction and sampling trajectory.

2 Related Work
2.1 Diffusion Model
Since the advent of DDPM [12], diffusion model has soon dom-
inated the family of generative models [7]. DDIM [35] and its
variants [20, 20] accelerate diffusion model sampling process to
tens of times, promoting its practicability dramatically. Palette
[31] extends diffusion model from unconditional image genera-
tion to conditional paradigm, opening the door of diffusion-based
image-to-image translation. With the advancement of multimodal
technology, large-scale T2I diffusion models [24, 29, 32] are pro-
posed to generate high-resolution images with open-domain text
prompts, bringing content creation to an unprecedented level. La-
tent Diffusion Model (LDM) [30] transfers T2I diffusion model from
high-dimension pixel space to low-dimensional feature space, re-
ducing the computational overhead significantly. To improve image
generation controllability, ControlNet [41] and T2i-adapter [23]
add spatial control to T2I diffusion models by training a control
module of the denoising U-Net conditioned on certain image priors
(e.g., canny edges, depth maps, human key points, etc.). SDXL [27]
and DiTs [26] propose Transformer-based denoising network, im-
proving T2I diffusion model to larger capacity. Currently, diffusion
model has been making rapid progress in various vision applica-
tions such as super-resolution [33], inpainting [21], colorization
[19], segmentation [37], 3D reconstruction [1], etc.

2.2 Computer Vision in Frequency Perspective
Research reveals that performance of deep neural networks can be
boosted from frequency domain perspective. For example, Ghosh et
al. [10] introduce DCT to CNN for image classification, accelerating
network convergence speed. Xie et al. [40] propose a frequency-
aware dynamic network for lightweight image super-resolution.
Cai et al. [4] impose Fourier frequency spectrum consistency to im-
age translation tasks, achieving better identity preservation. FreeU
[34] improves T2I generation quality by selectively enhancing or
depressing different frequency components of diffusion features
inside the denoising U-Net model. In this work, we solve text-driven
I2I problem through dynamic DCT frequency band substitution.

Figure 3: Illustration of the frequency band substitution (FBS)
layer. The FBS layer takes in two diffusion features and sub-
stitutes a certain frequency band of one diffusion feature
with the corresponding frequency band of the other feature
in 2D DCT domain. Better viewed with zoom-in.

3 Method
3.1 Overall Architecture
Established on the pre-trained Latent Diffusion Model (LDM), FB-
SDiff adapts it from T2I generation to text-driven I2I translation
with our proposed dynamic frequency band substitution, which effi-
ciently realizes flexible control over both guiding factor and guiding
intensity of the reference image to the T2I generated image.

As Fig. 2 shows, FBSDiff comprises three diffusion trajectories:
(i) inversion trajectory (𝑧0 → 𝑧𝑇𝑖𝑛𝑣 ); (ii) reconstruction trajectory
(𝑧𝑇𝑖𝑛𝑣 = 𝑧𝑇 → 𝑧0 ≈ 𝑧0); (iii) sampling trajectory (𝑧𝑇 → 𝑧0). Start-
ing from the initial feature 𝑧0 = 𝐸 (𝑥) extracted from the reference
image 𝑥 by the LDM encoder 𝐸, a 𝑇𝑖𝑛𝑣-step DDIM inversion is
employed to project 𝑧0 into the Gaussian noise latent space con-
ditioned on the null-text embedding 𝑣∅ , based on the assumption
that the ODE process can be reversed in the limit of small steps:

𝑧𝑡+1 =
√
𝛼𝑡+1 𝑓𝜃 (𝑧𝑡 , 𝑡, 𝑣∅) +

√
1 − 𝛼𝑡+1𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣∅), (1)

𝑓𝜃 (𝑧𝑡 , 𝑡, 𝑣∅) =
𝑧𝑡 −

√
1 − 𝛼𝑡𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣∅)√

𝛼𝑡
, (2)

where {𝛼𝑡 } are schedule parameters that follows the same setting as
DDPM [12], 𝜖𝜃 is the denoising U-Net of the pre-trained LDM. The
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Gaussian noise 𝑧𝑇𝑖𝑛𝑣 obtained after the 𝑇𝑖𝑛𝑣-step DDIM inversion
is directly used as the initial noise feature of the subsequent recon-
struction trajectory, which is a 𝑇 -step DDIM sampling process that
reconstructs 𝑧0 ≈ 𝑧0 from the inverted noise feature 𝑧𝑇 = 𝑧𝑇𝑖𝑛𝑣 :

𝑧𝑡−1 =
√
𝛼𝑡−1 𝑓𝜃 (𝑧𝑡 , 𝑡, 𝑣∅) +

√
1 − 𝛼𝑡−1𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣∅), (3)

in which 𝑓𝜃 (𝑧𝑡 , 𝑡, 𝑣∅) follows the same form as Eq. 2. The length
of the reconstruction trajectory could be much smaller than that
of the inversion trajectory (i.e., 𝑇 ≪ 𝑇𝑖𝑛𝑣 ) to save inference time.
The reconstruction trajectory is conditioned on the same null-text
embedding 𝑣∅ to ensure feature reconstructability (i.e., 𝑧0 ≈ 𝑧0).

Meanwhile, an equal-length sampling trajectory is applied in
parallel with the reconstruction trajectory for T2I synthesis. The
sampling trajectory is also a 𝑇 -step DDIM sampling process that
progressively denoises a randomly initialized Gaussian noise fea-
ture 𝑥𝑇 ∼ N(0, 𝐼 ) into 𝑥0 conditioned on the text embedding 𝑣 of
the target text prompt. To amplify the effect of text guidance, we
employ classifier-free guidance technique [13] by interpolating con-
ditional (target text) and unconditional (null text) noise prediction
at each time step with a guidance scale 𝜔 during sampling:

𝑧𝑡−1 =
√
𝛼𝑡−1 𝑓𝜃 (𝑧𝑡 , 𝑡, 𝑣, 𝑣∅) +

√
1 − 𝛼𝑡−1𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣, 𝑣∅), (4)

𝑓𝜃 (𝑧𝑡 , 𝑡, 𝑣, 𝑣∅) =
𝑧𝑡 −

√
1 − 𝛼𝑡𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣, 𝑣∅)√

𝛼𝑡
, (5)

𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣, 𝑣∅) = 𝜔 · 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣) + (1 − 𝜔) · 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑣∅). (6)
Due to the inherent property of DDIM inversion and DDIM sam-

pling, the reconstruction trajectory forms a deterministic denoising
mapping towards the reference image, during which the intermedi-
ate denoising results {𝑧𝑡 } can function as pivotal guidance features
to calibrate the corresponding counterparts {𝑧𝑡 } along the sam-
pling trajectory. Thus, correlation between the reference image and
the generated image can be established to allow for text-driven I2I
translation. Specifically, we implement feature calibration by in-
serting a plug-and-play frequency band substitution (FBS) layer in
between the reconstruction trajectory and the sampling trajectory.
FBS layer dynamically substitutes a certain frequency band of 𝑧𝑡
with the corresponding frequency band of 𝑧𝑡 along the reverse sam-
pling process, which efficiently imposes guidance of the reference
image to the T2I generation result.

To improve I2I translation visual quality, we partition the sam-
pling process into a calibration phase and a non-calibration phase,
separated by the time step 𝜆𝑇 . In the former calibration phase
(𝑧𝑇 → 𝑧𝜆𝑇 ), dynamic frequency band substitution is applied at
each time step for smooth calibration of the sampling trajectory;
in the latter non-calibration phase (𝑧𝜆𝑇−1 → 𝑧0), we remove FBS
layer to avoid over-constrained sampling result, fully unleashing
the generative power of the pre-trained T2I model to improve image
generation quality. Here 𝜆 denotes the ratio of the length of the
non-calibration phase to that of the entire sampling trajectory.

At last, the final result 𝑧0 of the sampling trajectory is decoded
back to the image space via the LDM decoder 𝐷 , producing the
final translated image 𝑥 , i.e., 𝑥 = 𝐷 (𝑧0).

3.2 Frequency Band Substitution Layer
As Fig. 3 illustrates, the FBS layer takes in a pair of diffusion features
𝑧𝑡 and 𝑧𝑡 , converts them from the spatial domain into the frequency

Algorithm 1 Complete algorithm of FBSDiff
Input: the reference image 𝑥 and the target text.
Output: the translated image 𝑥 .
1: Extract the initial latent feature 𝑧0 = 𝐸 (𝑥).
2: for 𝑡 = 0 to 𝑇𝑖𝑛𝑣 − 1 do
3: compute 𝑧𝑡+1 from 𝑧𝑡 via Eq. 1;
4: end for{DDIM inversion}
5: Initialize 𝑧𝑇 = 𝑧𝑇𝑖𝑛𝑣 , 𝑧𝑇 ∼ N(0, 𝐼 ).
6: for 𝑡 = 𝑇 to 𝜆𝑇 + 1 do
7: compute 𝑧𝑡−1 from 𝑧𝑡 via Eq. 3;
8: compute 𝑧𝑡−1 from 𝑧𝑡 via Eq. 4;
9: substitute a certain frequency band of 𝑧𝑡−1 with the corre-

sponding counterpart of 𝑧𝑡−1 via Eq. 7;
10: end for{DDIM sampling in the calibration phase}
11: for 𝑡 = 𝜆𝑇 to 1 do
12: compute 𝑧𝑡−1 from 𝑧 via Eq. 4;
13: end for{DDIM sampling in the non-calibration phase}
14: Obtain 𝑧0 and the final translated image 𝑥 = 𝐷 (𝑧0).

domain via 2D DCT, then transplants a certain frequency band in
the DCT spectrum of 𝑧𝑡 to the same location in the DCT spectrum of
𝑧𝑡 . Finally, 2D IDCT is applied to transform the fused DCT spectrum
of 𝑧𝑡 back to the spatial domain as the final calibrated feature.

In 2D DCT spectrum, elements with smaller coordinates (nearer
to the top-left origin) encode lower-frequency information while
larger-coordinate elements correspond to higher-frequency com-
ponents. We use the sum of 2D coordinates in DCT spectrum as
threshold to extract DCT frequency bands of different types and
bandwidths via binary masking. Specifically, we design three types
of binary masks which are respectively termed the low-pass mask
(𝑀𝑎𝑠𝑘𝑙𝑝 ), high-pass mask (𝑀𝑎𝑠𝑘ℎ𝑝 ), and mid-pass mask (𝑀𝑎𝑠𝑘𝑚𝑝 ):

𝑀𝑎𝑠𝑘𝑙𝑝 (𝑥,𝑦) = 1 𝑖 𝑓 𝑥 + 𝑦 ≤ 𝑡ℎ𝑙𝑝 𝑒𝑙𝑠𝑒 0,
𝑀𝑎𝑠𝑘ℎ𝑝 (𝑥,𝑦) = 1 𝑖 𝑓 𝑥 + 𝑦 > 𝑡ℎℎ𝑝 𝑒𝑙𝑠𝑒 0,
𝑀𝑎𝑠𝑘𝑚𝑝 (𝑥,𝑦) = 1 𝑖 𝑓 𝑡ℎ𝑚𝑝1 < 𝑥 + 𝑦 ≤ 𝑡ℎ𝑚𝑝2 𝑒𝑙𝑠𝑒 0,

where 𝑡ℎ𝑙𝑝 is the threshold of the low-pass filtering; 𝑡ℎℎ𝑝 is the
threshold of the high-pass filtering; 𝑡ℎ𝑚𝑝1 and 𝑡ℎ𝑚𝑝2 are respec-
tively the lower and upper bound of the mid-pass filtering. Given a
binary mask 𝑀𝑎𝑠𝑘∗ ∈ {𝑀𝑎𝑠𝑘𝑙𝑝 , 𝑀𝑎𝑠𝑘ℎ𝑝 , 𝑀𝑎𝑠𝑘𝑚𝑝 }, the frequency
band substitution in the FBS layer can be formulated as:

𝑧𝑡 = 𝐼𝐷𝐶𝑇 (𝐷𝐶𝑇 (𝑧𝑡 ) ·𝑀𝑎𝑠𝑘∗ + 𝐷𝐶𝑇 (𝑧𝑡 ) · (1 −𝑀𝑎𝑠𝑘∗)), (7)

where 𝐷𝐶𝑇 and 𝐼𝐷𝐶𝑇 refer to 2D DCT and 2D IDCT transforma-
tions. The use of low-pass mask𝑀𝑎𝑠𝑘𝑙𝑝 , high-pass mask𝑀𝑎𝑠𝑘ℎ𝑝 ,
and mid-pass mask𝑀𝑎𝑠𝑘𝑚𝑝 respectively corresponds to the extrac-
tion and substitution of the low-frequency band, high-frequency
band, and mid-frequency band. They control different guiding fac-
tors of the reference image to the T2I generation result:
Low-frequency band substitution enables low-frequency infor-
mation guidance of the reference image 𝑥 , realizing appearance
(e.g., color, luminance) and layout control over the generated 𝑥 ;
High-frequency band substitution enables high-frequency infor-
mation guidance of 𝑥 , realizing image contour control over 𝑥 ;
Mid-frequency band substitution enables mid-frequency infor-
mation guidance of 𝑥 , realizing image layout control over 𝑥 .
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Appearance and layout control with 
low-frequency band substitution 

Contour control with high-frequency 
band substitution 

Layout control with mid-frequency 
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Figure 4: Qualitative results of our method with different types of frequency band substitution. The generated image is
controlled by the reference image in terms of image appearance and layout with low-FBS; in terms of image contours with
high-FBS; and in terms of pure image layout with mid-FBS. Better viewed with zoom-in.

Reference Low-FBS Mid-FBS High-FBS

Figure 5: Comparison among different guiding factors
achieved by low-FBS, mid-FBS, and high-FBS. The T2I re-
sult maintains the appearance and layout of the reference
image with low-FBS; preserves image contours with high-
FBS; and inherits pure image layout with mid-FBS.

The DCT masking type and the corresponding thresholds used
in the FBS layer are hyper-parameters of our method, which could
be flexibly modulated to enable control over diverse guiding factors
and continuous guiding intensity of the reference image.

3.3 Implementation Details
We use the pre-trained Stable Diffusion v1.5 as the backbone diffu-
sion model and set the classifier-free guidance scale𝜔 = 7.5. We use
1000-step DDIM inversion to ensure high-quality reconstruction,

Text prompt: 

Reference

Reference

Diversified sampling results of our FBSDiff

Unique sampling result of Null-text Inversion

Figure 6: Our method enables diverse sampling results for
fixed reference image and text prompt, as contrasted with
Null-text Inversion that produces unique sampling result.

i.e., 𝑇𝑖𝑛𝑣=1000, and use 50-step DDIM sampling for both the recon-
struction and sampling trajectory, i.e., 𝑇=50. Along the sampling
trajectory, we allocate 55% time steps to the calibration phase and
the remaining 45% steps for the non-calibration phase, i.e., 𝜆=0.45.
For the default DCTmasking thresholds used in the FBS layer, we set
𝑡ℎ𝑙𝑝=80 for low-frequency-band substitution (low-FBS); 𝑡ℎℎ𝑝=5 for
high-frequency-band substitution (high-FBS); 𝑡ℎ𝑚𝑝1=5, 𝑡ℎ𝑚𝑝2=80
for mid-frequency-band substitution (mid-FBS). The complete algo-
rithm of FBSDiff is presented in Alg. 1.
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Figure 7: Qualitative method comparisons. Our FBSDiff with low-FBS is more adept at appearance preservation than related
methods, which better suits to I2I task pursuing appearance consistency between the reference image and the generated
image (top panel). Conversely, our method with high-FBS remarkably facilitates I2I appearance change compared with related
methods, which better suits to I2I task pursuing appearance divergence (bottom panel). Better viewed with zoom-in.

W/ low-FBS W/O FBSReference W/ low-FBS W/O FBS W/ low-FBS W/O FBS W/ low-FBS W/O FBS

Figure 8: Comparison between results with low-FBS and without FBS. Better viewd with zoom-in.

Reference

small semantic gap large semantic gap

Figure 9: Adaptation to varying semantic gap between the reference image and target text. Better viewed with zoom-in.

4 Experiments
4.1 Qualitative Results
Example text-driven I2I translation results of our method are shown
in Fig. 4. The low-FBS produces translated images that inherit the
appearance and layout of the reference image. For high-FBS, the gen-
erated image is aligned with the reference image in high-frequency

contours while the low-frequency appearance is not restricted. Re-
sults of mid-FBS only maintain the overall image layout of the
reference image, since lower-frequency appearance and the higher-
frequency contour information are filtered out in the DCT domain.
For all three modes of frequency band substitution, results exhibit
both high visual quality and high text fidelity. The control over
different guiding factors is more clearly demonstrated in Fig. 5.
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Figure 10: Appearance and layout guiding intensity control realized by varying 𝑡ℎ𝑙𝑝 in low-FBS. Better viewed with zoom-in.
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Figure 11: Contour guiding intensity control realized by vary-
ing 𝑡ℎ𝑚𝑝2 in mid-FBS. Better viewed with zoom-in.

We qualitatively compare our method with SOTA text-driven I2I
translation methods including Plug-and-Play (PAP) [39], Null-text
Inversion (Null-text) [22], Pix2Pix-zero [25], InstructPix2Pix (In-
sPix2Pix) [2], Prompt Tuning Inversion (PT-inversion) [8], StyleDif-
fusion [18], and VQGAN-CLIP (VQCLIP) [6], results are displayed in
Fig. 7. The top panel of Fig. 7 shows that our method with low-FBS
achieves better I2I appearance consistency than related approaches,
and is thus better suited to image creation scenario which favors
inheriting the appearance and style from an existing image. The
bottom panel of Fig. 7 shows that existing SOTA text-driven I2I
methods struggle at producing I2I results with large appearance
change from the reference images, while our method with high-FBS
excels in generating I2I results with significantly different appear-
ance, and is thus more suitable to image creation scenario where
appearance divergence is pursued.

An advantage of our approach over related methods is sampling
diversity. As displayed in Fig. 6, our FBSDiff can produce diverse
text-guided I2I results by randomly sampling 𝑥𝑇 from isotropic
Gaussian distribution, while other inversion-based methods [8, 18,
22, 25, 39] lack such sampling diversity due to directly initializing
𝑥𝑇 with the inverted feature embedding of the reference image.

The importance of FBS for reference image control is clearly
shown in Fig. 8, from which we see that low-FBS establishes I2I
appearance and layout correlations, while removing FBS leads to

”

”

Reference
Once 

Substitution Ours
Full

Substitution

”

Figure 12: Ablation study w.r.t. different manners of fre-
quency band substitution. Better viewed with zoom-in.

results without any correlation to the reference images. Moreover,
as Fig. 9 displays, our method robustly adapts to varying degrees
of semantic gap between the reference image and the target text
prompt. The translated image of our method can still comply with
the target text accurately with satisfying visual quality even in the
case of very large image-text semantic discrepancy.

Besides, our method also allows continuous control over the
guiding intensity of the reference image simply by modulating the
bandwidth of the substituted frequency band. Results displayed
in Fig. 10 demonstrate the image appearance and layout guiding
intensity control of our method by adjusting the low-pass filtering
threshold 𝑡ℎ𝑙𝑝 in the mode of low-FBS. Enlarging the value of 𝑡ℎ𝑙𝑝
widens the bandwidth of the transplanted low-frequency band and
thus increases the amount of guiding information of the reference
image, leading to the translated image with more resemblance to
the reference image. Conversely, lowering the value of 𝑡ℎ𝑙𝑝 narrows
the bandwidth of the substituted frequency band, which reduces
the amount of guiding information and thus brings more variations
to the translated result as compared with the reference image.

Likewise, results in Fig. 11 demonstrate image contour guiding in-
tensity control of our method by adjusting the upper bound thresh-
old 𝑡ℎ𝑚𝑝2 in the mode of mid-FBS. Increasing the value of 𝑡ℎ𝑚𝑝2
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Table 1: Quantitative evaluations of text-driven I2I translation methods.

Emphasis Pursuing image appearance consistency Pursuing image appearance divergence

Methods
Metrics Structure

Similarity(↑) LPIPS(↓) AdaIN Style
Loss(↓)

CLIP
Similarity(↑)

Aesthetic
Score(↑)

Structure
Similarity(↑)

AdaIN Style
Loss(↑)

CLIP
Similarity(↑)

Aesthetic
Score(↑)

PAP [39] 0.954 0.272 20.440 0.287 6.590 0.956 28.337 0.279 6.458
Null-text [22] 0.948 0.247 17.546 0.276 6.505 0.952 22.545 0.270 6.402

Pix2Pix-zero [25] 0.951 0.243 16.875 0.262 6.484 0.953 21.240 0.258 6.344
InsPix2Pix [2] 0.958 0.266 23.373 0.258 6.269 0.965 30.804 0.264 6.196
PT-inversion [8] 0.947 0.248 21.667 0.271 6.481 0.948 24.367 0.267 6.285

StyleDiffusion [18] 0.944 0.251 22.484 0.267 6.477 0.947 25.166 0.260 6.267
FBSDiff (ours) 0.962 0.241 15.452 0.285 6.583 0.964 33.875 0.281 6.463
The red font indicates the top-ranked value and the blue font indicates the second-ranked value.

leads to more high-frequency components of the reference image
included into the transplanted frequency band, and thus results in
stronger I2I contour consistency. On the contrary, decreasing the
value of 𝑡ℎ𝑚𝑝2 shrinks the transplanted high-frequency guiding
information and thus leads to weaker image contour consistency.

4.2 Ablation Study
We also explore other designs of FBS, including substituting the
frequency band only once at 𝜆𝑇 time step rather than along the
whole calibration phase (which we denote as Once Substitution),
and substituting the full DCT spectrum rather other only a partial
frequency band of it (which we refer to as Full Substitution).

The I2I results of different designs of FBS are displayed in Fig.
12. It shows that Once Substitution produces severely noisy re-
sults rather than reasonable images, indicating that step-by-step
FBS along the whole calibration phase is of crucial importance for
smooth and stable information fusion. Removing per-step feature
calibration of FBS in the early sampling process will inevitably
lead to large deviation of the sampling trajectory against the recon-
struction trajectory. In this case, substituting a frequency band at
an intermediate time step will cause completely incoherent DCT
spectrum, and thus leads to abnormal image translation results.

Besides, it also shows that Full Substitution fails to manipulate
the reference image as per the text prompt. This is because sub-
stituting the full DCT spectrum is equivalent to complete feature
replacement, which makes the sampling trajectory totally the same
as the reconstruction trajectory during the calibration phase, the
early part of the diffusion sampling process which dominates the
forming of image content. Therefore, the generated image content
is forced to be the same as the reference image after the calibra-
tion phase and is difficult to be modified noticeably during the
subsequent non-calibration phase, the latter part of the diffusion
sampling process that focuses on refining fine-grained image details
rather than coarse-grained image content.

4.3 Quantitative Evaluations
For quantitativemethod evaluation, we evaluatemethods separately
on the text-driven I2I task pursuing image appearance consistency
and the task pursuing image appearance divergence. For the former
task, we assess models’ appearance and layout preservation ability
by measuring Structure Similarity (↑), Perceptual Similarity (↑), and
Style Distance (↓) between I2I translation pairs. For the latter task,

we assess models’ contour preservation and appearance alteration
capability by measuring Structure Similarity (↑) and Style Distance
(↑) between I2I translation pairs. For Structure Similarity measure-
ment, we use DINO-ViT self-similarity distance [38] as the metric
for Structure Distance between two images, and define Structure
Similarity as 1 - Structure Distance. We use LPIPS [42] metric to
measure Perceptual Similarity, and use AdaIN style loss [14] to
measure Style Distance between I2I pairs. Besides, CLIP Similarity
(↑) is used to measure semantic consistency between the target
text and the translated image, i.e., text fidelity of the I2I translation
results. Finally, we evaluate Aesthetic Score (↑) of the translated
images via the pre-trained LAION Aesthetics Predictor V2 model.

We sample reference images from LAION Aesthetics 6.5+ dataset
for quantitative evaluation. For the above-mentioned two tasks, we
separately sample 500 reference images for each task and manually
design 2 editing text prompts for each reference image, resulting
in 1000 evaluation samples (reference image and target text pairs)
for each task. For evaluation of our method, we use low-FBS for
the task pursuing appearance consistency and use high-FBS for
the task pursuing appearance divergence. The average values of
all the metrics are reported in Tab. 1. Our method achieves top
rankings for all the metrics in both two tasks, indicating superiority
of our method in layout and appearance preservation with low-
FBS, as well as simultaneous contour preservation and appearance
modification with high-FBS. Moreover, the competitive results in
CLIP Similarity and Aesthetic Score reflect that our method can
generate I2I results with high text fidelity and visual quality.

5 Conclusion
This paper proposes FBSDiff, a plug-and-play method adapting
pre-trained T2I diffusion model to highly controllable text-driven
I2I translation. At the heart of our method is decomposing different
guiding factors of the reference image in the diffusion feature DCT
space, and dynamically transplanting a certain DCT frequency band
from diffusion features along the reconstruction trajectory into the
corresponding features along the sampling trajectory, which is
realized via our proposed frequency band substitution layer. Exper-
iments demonstrate that our method allows flexible control over
both guiding factors and guiding intensity of the reference image to
the T2I generated image. In summary, our FBSDiff provides a novel
solution to text-driven I2I translation from a frequency-domain per-
spective, integrating advantages in versatility, high controllability,
high visual quality, and plug-and-play efficiency.
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